

BOSSONG S.p.A. Via Enrico Fermi, 51 (Z.I.2) - 24050 GRASSOBBIO (Bergamo) Italy Tel +39 035 3846 011 - Fax +39 035 3846 012 - www.bossong.com - info@bossong.com

FASTENING SYSTEMS SYSTEMES DE FIXATION BEFESTIGUNGSSYSTEME SISTEMAS DE FIJACIÓN

CE

DECLARAÇÃO DE DESEMPENHO

De acordo com o Regulamento de Produtos de Construção nº 305/2011

DoP No. 11/0396

1. Código de identificação único do tipo de produto:

BCR POLY SF

2. Tipo, lote, número de série ou qualquer outro elemento que permita a identificação do produto de construção, de acordo com o artigo 11(4):

BCR + conteúdo em ml+ POLY SF. Exemplo: BCR 400 POLY SF

3. Utilização ou utilizações previstas do produto de construção, de acordo com a especificação técnica harmonizada relevante, conforme pretendido pelo fabricante:

Uso pretendido		Âncora química para ancoragem de hastes roscadas e barras com melhor aderência.				
Medidas		М8 - ф8	M10	-10ф	М12-12ф	M16
	Categoria B	80	8	5	95	105
ele se [mm]	Categoria c	80 com GC 12x80	85 com GC 15x85	135 com GC 15x135	85 com GC 20x85	-
	Categoria d	80	8	5	95	105
		GC = M	langa plástica p	erfurada para	uso em tijolos ocos ou per	furados
Alvenaria de tijolo maciço (utilizar categoria b) Alvenaria de tijolos ocos ou perfurados (utilizar categoria c) Blocos de concreto aerado autoclavado AAC (utilizar categoria d) A classe de resistência da argamassa de alvenaria deve ser no mínimo M 2,5 de acordo com a 2:2010.				e acordo com a EN 998-		
Hastes roscadas: X1) estruturas sujeitas a condições internas secas: elementos feitos de aço galvanizado (zir galvanizado a quente) e aço inoxidável A2, A4 ou aço de alta resistência à corrosão (HCR). X2) estruturas sujeitas à exposição atmosférica externa (incluindo ambiente industrial e marít condições de exposição ambiental relacionadas Material metálico da âncora e condições de exposição ambiental relacionadas Material metálico da âncora e condições internas permanentemente úmidas, desde que não existam condições particular agressivas: elementos em aço inoxidável a4 ou aço de alta resistência (HCR). X3) Estruturas sujeitas à exposição atmosférica externa (incluindo ambientes industriais e mar condições internas permanentemente úmidas, se existirem outras condições particularmente agressivas são, por exemplo, imersão permanente e alternada do mar ou na zona de pulverização de água do mar, atmosfera de cloreto de piscinas ou ai internos com poluição química (por exemplo, em plantas de dessulfurização ou túneis rodoviár materiais anticongelantes são usados): Elementos feitos de aço resistente à corrosão (HCR) Barras com classe de aderência melhorada B ou C de acordo com EN 1992-1-1				são (HCR). Idustrial e marítimo) e a Indições particularmente Industriais e marítimos) e Iticularmente agressivas. Inte e alternada em água e piscinas ou ambientes Itúneis rodoviários onde		
Tipo de carga		Carga estática e quase estática.				
Temperaturas de se	rviço	 a) de -40°C a +40°C (temperatura máxima de curto prazo +40°C e temperatura máxima contínua longo prazo +24°C). b) de -40°C a +50°C (temperatura máxima de curto prazo +50°C e temperatura máxima contínua longo prazo +40°C). 				
Categoria de uso	Categoria w/d e w/w: instalação em substrato úmido e uso em estruturas sujeitas a condições se úmidas. Perfuração com broca.				tas a condições secas e	

www.bossong.com

BPU — Banca Popolare di Bergamo Agenzia di Longuelo Via Mattioli, 69 ABI 5428 CAB 11103 C/C 220 IBAN: IT70 C054 2811 1030 0000 0000 220 Deutsche Bank S.p.A. Sede Bergamo Via Camozzi,82 ABI 3104 CAB 11100 C/C13030 IBAN:

IT 76 J 03104 11100 000000013030

ANEXO: Tipo e resistência do suporte

Tijolo n°	Nome do tijolo – Use a categoria Densidade [kg/m3] Dimensões C x L x A [mm]	lmagem de tijolo
1	Tijolo maciço (b) EN 771-1 Tijolo Completo ρ=1700 120 x 240 x 60	
2	Tijolo maciço (b) EN 771-1 Vermelho clássico ρ=1560 120 x 250 x 55	
3	Tijolo perfurado (c) EN 771-1 UNI Tijolo Duplo ρ=810 240 x 120 x 120	
4	Tijolo perfurado (c) EN 771-1 Tijolo perfurado ρ=550 250 x 250 x 120	
5	Tijolo perfurado (c) EN 771-1 Brique creuse RC 40 ρ=600 555 x 195 x 275	
6	Tijolo perfurado (c) EN 771-1 Porotherm 25 P+W ρ=800 373 x 238 x 250	
7	Tijolo oco (c) EN 771-1 Hlz B – 1.0 1NF 12-1 ρ=900 115 x 240 x 71	
8	Tijolo oco (c) EN 771-1 Poroton ρ=900 300 x 245 x 230	
9	AAC2 (d) EN 771-4 Climagold ρ=300 625 x 200 x 360	300 kg/m²
10	AAC5 (d) EN 771-4 Bloco sísmico ρ=575 625 x 200 x 300	575 kg/m

4. Nome, nome comercial registado ou marca comercial registada e endereço do fabricante, em conformidade com o artigo 11(5):

Bossong SpA - via Enrico Fermi 49/51 - 24050 Grassobbio (Bg) - Itália - www.bossong.com

5. Se for caso disso, nome e endereço do representante autorizado cujo mandato abrange as tarefas referidas no artigo 12.º(2): Não aplicável

6. Sistema ou sistemas de avaliação e verificação da regularidade do desempenho do produto de construção referido no Anexo V·

Sistema 1

7. No caso de uma declaração de desempenho relativa a um produto de construção abrangido pelo âmbito de uma norma harmonizada:

Não aplicável

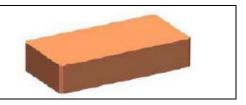
8. No caso de uma declaração de desempenho relativa a um produto de construção para o qual tenha sido emitida uma avaliação técnica europeia:

ETA- A Denmark A/S emitiu ETA-11/0396 com base no EAD 330076-01-0604.

TZUS (nº 1020) realizou:

determinação do tipo de produto com base em ensaios de tipo (incluindo amostragem), cálculos de tipo, valores retirados de tabelas ou documentação descritiva do produto; inspeção inicial da planta de fabricação e controle de produção da fábrica; vigilância contínua, avaliação e verificação do controle de produção da fábrica, com sistema de atestado 1 e emitiu o certificado de conformidade n° 1020-CPR-090-043643.

9. Desempenho declarado:


ESPECIFICAÇÃO TÉCNICA HARMONIZADA: EAD330076-01-0604						
CARACTERÍSTICAS ESSENCIAIS	DESEMPENHO DE AC	CORDO COM ETA-11/039	6			
Parâmetros de instalação	M8	M10	M12	M16		
e [mm]	8	10	12	16		
d ₀ [mm] categoria de leito (alvenaria maciça - AAC)	10	12	14	18		
d ₀ [mm] categoria c (alvenaria oca ou perfurada)	12	16	20	-		
Tipo de manga de plástico para uso na categoria C	GC 12x80	GC 15x85 GC 15x135	GC 20x85	-		
d consertar [mm]	9	12	14	18		
h 1 [mm]		h _{ef} +	5 mm			
T inst [Nm] categoria b (alvenaria maciça)	5	8	10	10		
T inst [Nm] categoria c (alvenaria oca ou perfurada)	3	4	6	-		
T inst [Nm] categoria d (tijolo AAC)	2	2	2	2		

Tijolo	Condições de instalação e utilização	Diâmetro	Fator B
Tijolo n°1	d/d - s/d - s/s	M8-M10-M12	0,85
Tijolo n°2	d/d - s/d - s/s	M8 a M16 e φ8 a φ12	0,85
Tijolo n°3-4-5-6-7	d/d - s/d - s/s	M8+GC 12x80 M10+GC 15x85 M12+GC 20x85	0,85
Tijolo n°8	d/d - s/d - s/s	M10+GC 15x135	0,85
Tijolo n° 9-10	d/d - s/d - s/s	M8 a M16	0,89

Tijolo maciço

Tipo de tijolo	Tijolo maciço
Resistência à compressão [N/mm2]	≥73
Dimensões do tijolo [mm]	≥ 240 x 120 x 60
Método de perfuração	Perfuração de percussão rotativa

Parâmetros de instalação

Diâmetro	Profundidade de ancoragem [mm]	Distância da borda [mm]	Espaçamento [mm]
		c min = c cr	S min = S cr , ⊥= S cr ,II
M8	80	120	240
M10	85	128	255
M12	95	143	285

Valores característicos de resistência a cargas de tração e cisalhamento

Diâmetro	Profundidade de ancoragem [mm]		l/d, w/d e w/w 4°C/+40°C e -40°C/+40°C/+50°C
	ancoragem [mm]	N _{Rk} [kN]	V _{Rk,b} [kN]
M8	80	1,50	4,50
M10	85	3,00	9.00
M12	95	3,00	9.00

- 1) Para planejamento conforme TR 054: N $_{Rk}$ = N $_{Rk,p}$ = N $_{Rk,b}$; N $_{Rk,s}$ conforme Tabela C2 Anexo C2; Cálculo N $_{Rk,pb}$ ver TR 054 2) Para V $_{Rk}$, veja Anexo C2, Tabela C2; Cálculo de V $_{Rk,pb}$ e V $_{Rk,c}$ veja TR 054

Deslocamento

Diâmetro	Profundidade de ancoragem [mm]	Deslocamento sob carga de serviço Carga de tração e cisalhamento					
	ancoragem [mm]	F [kN]	δ _{V0} [mm]	δV [∞mm]			
M8	80	0,65	0,08	0,16	1.32	0,23	0,34
M10	85	1.03	0,07	0,16	2,94	0,48	0,72
M12	95	1.15	0,06	0,16	2,62	0,38	0,57

Configuração	Tra	Tração		Cisalhamento paralelo à aresta livre		Cisalhamento perpendicular à borda livre	
Comiguração	αg II, N	αg⊥, N	α g II, V II	α _{g ⊥} , v II	α _g II, V⊥	α _g ⊥,, ν⊥	
$S \ge S \min e C \ge C \min$	2.0	2.0	2.0	2.0	2.0	2.0	

Tijolo vermelho clássico

Tipo de tijolo	Tijolo vermelho clássico
Resistência à compressão [N/mm2]	≥ 21
Dimensões do tijolo [mm]	≥ 250 x 120 x 55
Método de perfuração	Perfuração de percussão rotativa

Parâmetros de instalação

Diâmetro	Profundidade de ancoragem [mm]	Distância da borda [mm]		Espaçamo	ento [mm]
		C mínimo	C cr	S mínimo	S cr , ⊥= S cr,II
M8	80	50	120	50	240
M10	85	50	128	50	255
M12	95	50	143	50	285
M16	105	60	158	60	315

Valores característicos de resistência a cargas de tração e cisalhamento

Diâmetro	Profundidade de ancoragem [mm]	Categorias d/d, w/d e w/w Faixa de temperatura-40°C/+24°C/+40°C e -40°C/+40°C/+50°C N Rk [kN] V Rk,b [kN]				
	ancoragem [mm]					
		C= C min - S= S min		C= C min - S= S min	C= CCr - S= SCr	
M8	80	2,00	2,00	4,50	5,50	
M10	85	2,50 2,50		8.00	8,50	
M12	95	3,00	3,50	11h00	11h50	
M16	105	3,50	4,00	13h00	13,50	

- 1) Para planejamento conforme TR 054: N Rk = N Rk,p = N Rk,b; N Rk,s conforme Tabela C2 Anexo C2; Cálculo N Rk,pb ver TR 054
 2) Para V Rk, veja Anexo C2, Tabela C2; Cálculo de V Rk,pb e V Rk,c veja TR 054

Deslocamento

Diâmetro	Profundidade de ancoragem [mm]	Deslocamento sob carga de serviço Carga de tração e cisalhamento F [kN] δ № [mm] δ Ν [mm] δ V [∞mm]						
	uncoragem [mm]							
M8	80	0,71	0,08	0,16	1,62	0,27	0,41	
M10	85	0,97	0,10	0,20	2,50	0,30	0,45	
M12	95	1.31	0,11	0,22	3,42	0,34	0,51	
M16	105	1,48	0,13	0,26	3,87	0,35	0,53	

Fator de grupo

Configuração	Tração		Cisalhamento paralelo à aresta livre		Cisalhamento perpendicular à borda livre	
oomiguruguo	α _g II, N	$\alpha_{g\perp}$, N	α _g II, V II	α _{g ⊥} , v II	α _g II, V⊥	α _{g ⊥} ,,ν⊥
$S \ge S_{min} e C \ge C_{min}$	2.0	2.0	2.0	2.0	2.0	2.0

- 5 -

Tijolo vermelho clássico

Tipo de tijolo	Tijolo vermelho clássico
Resistência à compressão [N/mm2]	≥ 21
Dimensões do tijolo [mm]	≥ 250 x 120 x 55
Método de perfuração	Perfuração de percussão rotativa

Parâmetros de instalação

Diâmetro	Profundidade de ancoragem [mm]	Distância da	borda [mm]	Espaçamo	ento [mm]
		C mínimo C cr		S mínimo	S cr , ⊥= S cr,II
ф8	80	50	50 120		240
φ10	85	50	128	50	255
φ12	95	50	143	50	285

Valores característicos de resistência a cargas de tração e cisalhamento

Diâmetro	Profundidade de ancoragem [mm]	Categorias d/d, w/d e w/w Faixa de temperatura -40°C/+24°C/+40°C e -40°C/+40°C/+50°C						
	ancoragem [mm]	N Rk	[kN]	V Rk,t	[kN]			
		C= C min - S= S min	C= CCr - S= scr	C= C min - S= S min	C= CCr - S= scr			
ф8	80	2,00	2,00	4,50	5,50			
φ10	85	3,00	3,00	8.00	8.00			
φ12	95	3,00	3,50	11h00	11h50			

¹⁾ Para planejamento conforme TR 054: N $_{Rk}$ = N $_{Rk,p}$ = N $_{Rk,b}$; N $_{Rk,s}$ conforme Tabela C2 Anexo C2; Cálculo N $_{Rk,pb}$ ver TR 054 2) Para V $_{Rk}$, veja Anexo C2, Tabela C2; Cálculo de V $_{Rk,pb}$ e V $_{Rk,c}$ veja TR 054

Deslocamento

Diâmetro	Profundidade de ancoragem [mm]	Deslocamento sob carga de serviço Carga de tração e cisalhamento						
	anooragem [mm]	F [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	F [kN]	δ v ₀ [mm]	δV [∞mm]	
ф8	80	0,81	0,12	0,24	1,63	0,29	0,44	
φ10	85	1.08	0,13	0,26	2.31	0,34	0,51	
φ12	95	1.21	0,15	0,30	3.33	0,38	0,57	

Configuração	Tração		Cisalhamento paralelo à aresta livre		Cisalhamento perpendicular à borda livre	
Jonnigulação	αg II, N	$lpha_{g\perp,N}$	α _g II, V II	α _{g ⊥} , v II	α _g II, V⊥	α _{д ⊥} " ν⊥
$S \ge S_{min} e C \ge C_{min}$	2.0	2.0	2.0	2.0	2.0	2.0

Tijolo DOPPIO UNI

Tipo de tijolo	Tijolo DOPPIO UNI	FEE
Resistência à compressão [N/mm2]	≥ 18,3	
Dimensões do tijolo [mm]	≥ 240 x 120 x 120	
Método de perfuração	Perfuração rotativa	

Parâmetros de instalação

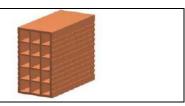
Diâmetro	Profundidade de ancoragem [mm]	Manga comprimento x comprimento [mm]	Distância da borda [mm]		Distância da borda [mm] Espaçamento [mm]	
			C mínimo	C cr	$S_{min,II} = S_{cr,II}$	$S_{minimo,\perp} = S_{cr,\perp}$
M8	80	12x80	120	120	240	120
M10	85	15x85	120	120	240	120
M12	85	20x85	120	120	240	120

Valores característicos de resistência a cargas de tração e cisalhamento

Diâmetro	Profundidade de ancoragem	Manga comprimento x	Categorias d/d, w/d e w/w Faixa de temperatura -40°C/+24°C/+40°C e -40°C/+40°C/+50°C			
	[mm]	comprimento [mm]	N _{Rk} [kN]	V _{Rk,b} [kN]		
M8	80	12x80	4,00	6.00		
M10	85	15x85	5,00	6,50		
M12	85	20x85	5,50	9.00		

¹⁾ Para planejamento conforme TR 054: N Rk = N Rk,p = N Rk,b; N Rk,s conforme Tabela C2 Anexo C2; Cálculo N Rk,pb ver TR 054 2) Para V Rk, veja Anexo C2, Tabela C2; Cálculo de V Rk,pb e V Rk,c veja TR 054

Deslocamento


Diâmetro	Profundidade de ancoragem [mm]	Deslocamento sob carga de serviço Carga de tração e cisalhamento						
	uncoragem [mm]	F [kN]	δ _{N0} [mm]	δ _{Ν∞} [mm]	F [kN]	δ _{V0} [mm]	δV [∞mm]	
M8	80	1,48	0,06	0,16	1,72	0,20	0,30	
M10	85	1,81	0,08	0,16	2.03	0,38	0,57	
M12	85	2.09	0,10	0,20	2,93	0,34	0,51	

Configuração	Tração		Cisalhamento paralelo à aresta livre		Cisalhamento perpendicular à borda livre	
g	αg II, N	$lpha_{g\perp,N}$	α _g II, V II	α _{g ⊥} , v II	α _g II, V⊥	α g ⊥,, ν⊥
$S \ge S_{min} e C \ge C_{min}$	2.0	2.0	2.0	2.0	2.0	2.0

Tijolo perfurado

Tipo de tijolo	Tijolo perfurado
Resistência à compressão [N/mm2]	≥ 5,3
Dimensões do tijolo [mm]	≥ 250 x 120 x 250
Método de perfuração	Perfuração rotativa

Parâmetros de instalação

Diâmetro	Profundidade de ancoragem [mm]	Manga comprimento x comprimento [mm]	Distância da	ı borda [mm]	Espaçamento [mm]		
			C mínimo	C cr	$S_{min,II} = S_{cr,II}$	$S_{minimo,\perp} = S_{cr,\perp}$	
M8	80	12x80	125	125	250	250	
M10	85	15x85	125	125	250	250	
M12	85	20x85	125	125	250	250	

Valores característicos de resistência a cargas de tração e cisalhamento

Diâmetro	Profundidade de ancoragem	Manga comprimento x	Categorias d/d, w/d e w/w Faixa de temperatura -40°C/+24°C/+40°C e -40°C/+40°C/+50°C			
	[mm]	comprimento [mm]	N _{Rk} [kN]	V _{Rk,b} [kN]		
M8	80	12x80	0,75	3,00		
M10	85	15x85	2,00	3,00		
M12	85	20x85	2,00	3,00		

- 1) Para planejamento conforme TR 054: N $_{Rk}$ = N $_{Rk,p}$ = N $_{Rk,b}$; N $_{Rk,s}$ conforme Tabela C2 Anexo C2; Cálculo N $_{Rk,pb}$ ver TR 054 2) Para V $_{Rk}$, veja Anexo C2, Tabela C2; Cálculo de V $_{Rk,pb}$ e V $_{Rk,c}$ veja TR 054

Deslocamento

Diâmetro	Profundidade de ancoragem [mm]	Deslocamento sob carga de serviço Carga de tração e cisalhamento					
	ancoragem [mm]	F [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	F [kN]	δ v ₀ [mm]	δV [mmm]
M8	80	0,29	0,06	0,16	0,93	0,31	0,46
M10	85	0,73	0,08	0,16	1.08	0,23	0,34
M12	85	0,80	0,07	0,16	0,86	0,18	0,27

Configuração	Tração			paralelo à aresta livre	Cisalhamento perpendicular à borda livre	
oomiguruguo	αg II, N	$lpha_{g\perp}$, N	α _g II, V II	α _{g ⊥} , v II	α _g II, V⊥	α _{g ⊥} "ν⊥
$S \ge S_{min} e C \ge C_{min}$	2.0	2.0	2.0	2.0	2.0	2.0

Brique tijolo creuse RC 40

Tipo de tijolo	Brique creuse RC 40
Resistência à compressão [N/mm2]	≥ 4,0
Dimensões do tijolo [mm]	≥ 555 x 195 x 275
Método de perfuração	Perfuração rotativa

Parâmetros de instalação

Diâmetro	Profundidade de ancoragem [mm]	Manga comprimento x comprimento [mm]	Distância da borda [mm]		Espaçamento [mm]	
			C mínimo	C cr	$S_{min,II} = S_{cr,II}$	$S_{minimo,\perp} = S_{cr,\perp}$
M8	80	12x80	278	278	555	275
M10	85	15x85	278	278	555	275
M12	85	20x85	278	278	555	275

Valores característicos de resistência a cargas de tração e cisalhamento

Diâmetro	Profundidade de ancoragem	Manga comprimento x	Categorias d/d, w/d e w/w Faixa de temperatura -40°C/+24°C/+40°C e -40°C/+40°C/+50°C			
	[mm]	comprimento [mm]	N _{Rk} [kN]	V _{Rk,b} [kN]		
M8	80	12x80	1,00	1,50		
M10	85	15x85	1,00	1,50		
M12	85	20x85	0,75	1,50		

¹⁾ Para planejamento conforme TR 054: N $_{Rk}$ = N $_{Rk,p}$ = N $_{Rk,b}$; N $_{Rk,s}$ conforme Tabela C2 Anexo C2; Cálculo N $_{Rk,pb}$ ver TR 054 2) Para V $_{Rk}$, veja Anexo C2, Tabela C2; Cálculo de V $_{Rk,pb}$ e V $_{Rk,c}$ veja TR 054

Deslocamento


Diâmetro	Profundidade de ancoragem [mm]	Deslocamento sob carga de serviço Carga de tração e cisalhamento					
	ancoragem [mm]	F [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	F [kN]	δ v ₀ [mm]	δV [∞mm]
M8	80	0,39	0,06	0,16	0,44	0,10	0,15
M10	85	0,44	0,06	0,16	0,63	0,18	0,27
M12	85	0,26	0,06	0,16	0,44	0,27	0,40

Configuração	Tração			paralelo à aresta livre	Cisalhamento perpendicular à borda livre	
Comiguração	αg II, N	$lpha_{g\perp}$, N	α _g II, V II	α _{g ⊥} , v II	α _g II, V⊥	α _{g ⊥} "ν⊥
$S \ge S$ min e $C \ge C$ min	2.0	2.0	2.0	2.0	2.0	2.0

Tijolo Porotherm 25 P+W

Tipo de tijolo	Porotherm 25 P+W
Resistência à compressão [N/mm2]	≥ 15,0
Dimensões do tijolo [mm]	≥ 373 x 238 x 250
Método de perfuração	Perfuração rotativa

Parâmetros de instalação

Diâmetro	Profundidade de ancoragem [mm]	Manga comprimento x comprimento [mm]	Distância da borda [mm]		Espaçamento [mm]	
			C mínimo	C cr	$S_{min,II} = S_{cr,II}$	S $_{\text{mínimo},\perp}$ = S $_{\text{cr},\perp}$
M8	80	12x80	187	187	373	250
M10	85	15x85	187	187	373	250
M12	85	20x85	187	187	373	250

Valores característicos de resistência a cargas de tração e cisalhamento

Diâmetro	Profundidade de ancoragem	Manga comprimento x	Categorias d/d, w/d e w/w Faixa de temperatura -40°C/+24°C/+40°C e -40°C/+40°C/+50°C				
	[mm]	comprimento [mm]	N _{Rk} [kN]	V _{Rk,b} [kN]			
M8	80	12x80	2,50	2,50			
M10	85	15x85	2,50	3,50			
M12	85	20x85	3,00	3,50			

¹⁾ Para planejamento conforme TR 054: N $_{Rk}$ = N $_{Rk,p}$ = N $_{Rk,b}$; N $_{Rk,s}$ conforme Tabela C2 Anexo C2; Cálculo N $_{Rk,pb}$ ver TR 054 2) Para V $_{Rk}$, veja Anexo C2, Tabela C2; Cálculo de V $_{Rk,pb}$ e V $_{Rk,c}$ veja TR 054

Deslocamento

Diâmetro	Profundidade de ancoragem [mm]	Carda de tracão e cisalnamento					
		F [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	F [kN]	δ v ₀ [mm]	δV [∞mm]
M8	80	0,92	0,06	0,16	0,78	0,23	0,34
M10	85	0,91	0,06	0,16	1.06	0,19	0,28
M12	85	1.02	0,06	0,16	1,00	0,31	0,46

Configuração	o Tra			paralelo à aresta livre	Cisalhamento perpendicular à borda livre	
Comiguração	αg II, N	$lpha_{g\perp}$, N	α _g II, V II	α _{g ⊥} , v II	α _g II, V⊥	α g ⊥,,∨⊥
$S \ge S$ min e $C \ge C$ min	2.0	2.0	2.0	2.0	2.0	2.0

Tijolo Hlz B – 1.0 1NF 12-1

Tipo de tijolo	HIz B – 1.0 1NF 12-1
Resistência à compressão [N/mm2]	≥ 15,0
Dimensões do tijolo [mm]	≥ 115 x 240 x 71
Método de perfuração	Perfuração rotativa

Parâmetros de instalação

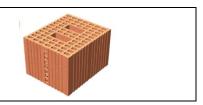
Diâmetro	Profundidade de ancoragem [mm]	Manga comprimento x comprimento [mm]	Distância da borda [mm]		Espaçam	ento [mm]
			C mínimo	C cr	S min,II = S cr,II	S $_{\text{mínimo},\perp}$ = S $_{\text{cr},\perp}$
M8	80	12x80	120	120	240	120
M10	85	15x85	120	120	240	120
M12	85	20x85	120	120	240	120

Valores característicos de resistência a cargas de tração e cisalhamento

Diâmetro	Profundidade de ancoragem	Manga comprimento x	Categorias d/d, w/d e w/w Faixa de temperatura -40°C/+24°C/+40°C e -40°C/+40°C/+50°C				
	[mm]	comprimento [mm]	N _{Rk} [kN]	V _{Rk,b} [kN]			
M8	80	12x80	3,50	4,00			
M10	85	15x85	4,50	5,50			
M12	85	20x85	5,00	5,50			

¹⁾ Para planejamento conforme TR 054: N $_{Rk}$ = N $_{Rk,p}$ = N $_{Rk,b}$; N $_{Rk,s}$ conforme Tabela C2 Anexo C2; Cálculo N $_{Rk,pb}$ ver TR 054 2) Para V $_{Rk}$, veja Anexo C2, Tabela C2; Cálculo de V $_{Rk,pb}$ e V $_{Rk,c}$ veja TR 054

Deslocamento


Diâmetro	Profundidade de ancoragem [mm]	Deslocamento sob carga de serviço Carga de tração e cisalhamento						
		F [kN]	δ _{N0} [mm]	δ _{Ν∞} [mm]	F [kN]	δ v ₀ [mm]	δV [∞mm]	
M8	80	1.19	0,12	0,24	1,25	0,17	0,25	
M1	85	1,69	0,07	0,16	2.23	0,69	1.03	
M1	85	1,78	0,06	0,16	1,65	0,13	0,19	

Configuração	Tração			paralelo à aresta livre	Cisalhamento perpendicular à borda livre	
Comiguração	αg II, N	$lpha_{g\perp}$, N	α _g II, V II	α _{g ⊥} , v II	α _g II, V⊥	α _{g ⊥} "ν⊥
$S \ge S$ min e $C \ge C$ min	2.0	2.0	2.0	2.0	2.0	2.0

Tijolo Poroton P800

Tipo de tijolo	Poroton P800	
Resistência à compressão [N/mm2]	≥ 15,0	
Dimensões do tijolo [mm]	≥ 300 x 245 x 230	
Método de perfuração	Perfuração rotativa	

Parâmetros de instalação

Diâmetro	Profundidade de ancoragem [mm]	Manga comprimento x comprimento [mm]	Distância da	Distância da borda [mm]		Espaçamento [mm]		
			C mínimo	C cr	$S_{min,II} = S_{cr,II}$	$S_{minimo,\perp} = S_{cr,\perp}$		
M10	135	15x135	100	100	300	230		

Valores característicos de resistência a cargas de tração e cisalhamento

Diâmetro	Profundidade de ancoragem	Manga comprimento x	Categorias d/d, w/d e w/w Faixa de temperatura -40°C/+24°C/+40°C e -40°C/+40°C/+50°C			
	[mm]	[mm] comprimento [mm]	N _{Rk} [kN]	V _{Rk,b} [kN]		
M10	135	15x135	3,50	5,50		

¹⁾ Para planejamento conforme TR 054: N $_{Rk}$ = N $_{Rk,p}$ = N $_{Rk,b}$; N $_{Rk,s}$ conforme Tabela C2 Anexo C2; Cálculo N $_{Rk,pb}$ ver TR 054 2) Para V $_{Rk}$, veja Anexo C2, Tabela C2; Cálculo de V $_{Rk,pb}$ e V $_{Rk,c}$ veja TR 054

Deslocamento

Diâmetro	Profundidade de ancoragem [mm]	Deslocamento sob carga de serviço Carga de tração e cisalhamento						
		F [kN]	δ _{N0} [mm]	δ _{Ν∞} [mm]	F [kN]	δ v ₀ [mm]	δV [∞mm]	
M10	135	1.22	0,11	0,22	1,61	0,24	0,36	

Configuração	Tração		Cisalhamento paralelo à aresta livre		Cisalhamento perpendicular à borda livre	
- Comiguração	αg II, N	$lpha_{g\perp,N}$	α _g II, V II	α _{g ⊥} , v II	α _g II, V⊥	α g ⊥,, ν⊥
$S \ge S_{min} e C \ge C_{min}$	2.0	2.0	2.0	2.0	2.0	2.0

Tijolo Climagold AAC2

Tipo de tijolo	Climagold
Resistência à compressão [N/mm2]	≥ 1,8
Dimensões do tijolo [mm]	≥ 625 x 200 x 360
Método de perfuração	Perfuração rotativa

Parâmetros de instalação

Diâmetro	Profundidade de ancoragem [mm]	Distância da	borda [mm]	Espaçamo	ento [mm]
		C mínimo	C cr	S mínimo	S cr , ⊥= S cr,II
M8	80	50	120	50	240
M10	85	50	128	50	255
M12	95	50	143	50	285
M16	105	60	158	60	315

Valores característicos de resistência a cargas de tracão e cisalhamento

Diâmetro	Profundidade de ancoragem [mm]	Categorias d/d, w/d e w/w Faixa de temperatura-40°C/+24°C/+40°C e -40°C/+40°C/+50°C						
	ancoragem [mm]	N Rk	[kN]	V _{Rk,} l	V _{Rk,b} [kN]			
		C= C min - S= S min	C= CCr - S= scr	C= C min - S= S min	c= ccr _ s= scr			
M8	80	1,00	1,50	1,00	1,50			
M10	85	1,50	2,00	1,50	1,50			
M12	95	2,00	2,50	2,50	2,50			
M16	105	2,00	2,50	2,50	2,50			

¹⁾ Para planejamento conforme TR 054: N Rk = N Rk,p = N Rk,b; N Rk,s conforme Tabela C2 Anexo C2; Cálculo N Rk,pb ver TR 054 2) Para V Rk, veja Anexo C2, Tabela C2; Cálculo de V Rk,pb e V Rk,c veja TR 054

Deslocamento

Diâmetro	Profundidade de ancoragem [mm]	Deslocamento sob carga de serviço Carga de tração e cisalhamento					
	uncoragem [mm]	F [kN]	δ _{N0} [mm]	δ _{Ν∞} [mm]	F [kN]	δ _{V0} [mm]	δV [∞mm]
M8	80	0,63	0,10	0,20	0,65	0,31	0,47
M10	85	0,83	0,12	0,24	0,69	0,34	0,51
M12	95	1.01	0,15	0,30	0,90	0,38	0,57
M16	105	0,99	0,16	0,32	0,98	0,40	0,60

Configuração	Tração		Cisalhamento paralelo à aresta livre		Cisalhamento perpendicular à borda livre	
oomiguruguo	α _g II, N	$\alpha_{g\perp}$, N	α _g II, V II	α _{g ⊥} , v II	α _g II, V⊥	αд⊥,, ∨⊥
$S \ge S_{min} e C \ge C_{min}$	2.0	2.0	2.0	2.0	2.0	2.0

Bloco sísmico de tijolos AAC5

Tipo de tijolo	Bloco sísmico
Resistência à compressão [N/mm2]	≥ 5,0
Dimensões do tijolo [mm]	≥ 625 x 200 x 300
Método de perfuração	Perfuração rotativa

Parâmetros de instalação

Diâmetro	Profundidade de ancoragem [mm]	Distância da	borda [mm]	Espaçamo	ento [mm]
		C mínimo	C cr	S mínimo	S cr , ⊥= S cr,II
M8	80	50	120	50	240
M10	85	50	128	50	255
M12	95	50	143	50	285
M16	105	60	158	60	315

Valores característicos de resistência a cargas de tração e cisalhamento

Diâmetro	Profundidade de ancoragem [mm]	Categorias d/d, w/d e w/w Faixa de temperatura -40°C/+24°C/+40°C e -40°C/+40°C/+50°C						
	ancoragem [mm]	N Rk	[kN]	V Rk,I	V _{Rk,b} [kN]			
		C= C min - S= S min	C= CCr - S= scr	C= C min - S= S min	C=C cr - S=S cr			
M8	80	1,00	2,50	1,00	3,50			
M10	85	1,50	3,00	1,50	4,00			
M12	95	2,00	3,50	2,50	4,00			
M16	105	2,00	4,00	2,50	4,00			

¹⁾ Para planejamento conforme TR 054: N Rk = N Rk,p = N Rk,b; N Rk,s conforme Tabela C2 Anexo C2; Cálculo N Rk,pb ver TR 054 2) Para V Rk, veja Anexo C2, Tabela C2; Cálculo de V Rk,pb e V Rk,c veja TR 054

Deslocamento

Diâmetro	Profundidade de ancoragem [mm]	Deslocamento sob carga de serviço Carga de tração e cisalhamento					
	uncoragem [mm]	F [kN]	δ _{N0} [mm]	δ _{Ν∞} [mm]	F [kN]	δ _{V0} [mm]	δV [∞mm]
M8	80	1.10	0,08	0,16	1.29	0,31	0,47
M10	85	1.22	0,10	0,20	1,53	0,32	0,48
M12	95	1,52	0,11	0,22	1,55	0,43	0,65
M16	105	1,74	0,11	0,22	1,58	0,45	0,68

Configuração	Tração		Cisalhamento paralelo à aresta livre		Cisalhamento perpendicular à borda livre	
oomiguruguo	α _g II, N	$\alpha_{g\perp}$, N	α _g II, V II	α _{g ⊥} , v II	α _g II, V⊥	αд⊥,, ∨⊥
$S \ge S_{min} e C \ge C_{min}$	2.0	2.0	2.0	2.0	2.0	2.0

ESPECIFICAÇÃO TÉCNICA HARMONIZADA: EAD330076-01-0604				
CARACTERÍSTICAS ESSENCIAIS	DESEMPENHO			
Reação ao fogo	Na aplicação final as espessuras das camadas de o produto tem aproximadamente 1 ÷ 2 mm e a maioria destes produtos são classificados na classe A1 de acordo com a decisão HÁ 96/603/CE . Portanto pode-se supor que o material encadernador (resina sintético ou uma mistura de resina sintética e cimentício) em conexão com a âncora metálica, em uso aplicação final, Não faz alguma contribuição para o desenvolvimento do fogo ou para um incêndio totalmente desenvolvido e não tem nenhuma influência no risco de desenvolvimento de fumaça.			

ESPECIFICAÇÃO TÉCNICA HARMONIZADA: EAD330076-01-0604		
CARACTERÍSTICAS ESSENCIAIS	DESEMPENHO	
Resistente ao fogo	Desenvolvimento Não Destrutivo (DPD)	

LENDA DOS SÍMBOLOS			
е	Diâmetro do parafuso ou parte roscada		
d ₀	Diâmetro do furo		
d consertar	Diâmetro do furo no objeto a ser fixado		
ele e	Profundidade de ancoragem efetiva		
h1	Profundidade do furo		
T inst	Torque de aperto		
S mínimo	Distância mínima entre eixos		
C _{mínimo}	Distância mínima das bordas		
N _{Rk}	Resistência à tração característica para ancoragem simples		
V_{Rk}	Resistência característica ao cisalhamento para cada âncora		
γ Milímetros	Coeficiente de segurança parcial		
S _{cr,N}	Espaçamento para garantir a transmissão da carga característica para uma única ancoragem		
C cr,N	Distância da borda para garantir a transmissão da carga característica para uma única ancoragem		
β	Fator conforme EAD330076-01-0604		
α	Fator de grupo		
F	Carga de serviço		
δ 0	Deslocamento de curto prazo sob carga de serviço		
δ_{∞}	Viagens de longa duração sob carga de serviço		
Desenvolvimento	Desempenho não declarado		
Não Destrutivo (DPD)			

Regulamento REACH n°1907/2006

Prezado cliente.

Informamos que nossa empresa, dentro da cadeia de suprimentos da regulamentação REACH, é classificada como usuária a jusante de substâncias e preparações.

Em relação ao produto definido no ponto 1, gostaríamos de confirmar que ele não contém atualmente substâncias consideradas SVHC com base na lista publicada em:

http://echa.europa.eu/chem_data/candidate_list_table_en.asp .

A ficha de dados de segurança do produto pode ser solicitada em nosso escritório técnico: <u>tek@bossong.com</u> ou baixada em nosso site <u>www.bossong.com</u> .

10. O desempenho do produto referido nos pontos 1 e 2 está em conformidade com o desempenho declarado referido no ponto 9.

Esta declaração de desempenho é emitida sob a responsabilidade exclusiva do fabricante referido no ponto 4. Assinado por e em nome de:

Nome e função	Local e data de lançamento	Assinatura
Andréa Taddei Diretor Geral	Grassobbio (Bg) - Itália 29/03/2024	Andra Coll.